MM algorithms for geometric and signomial programming
نویسندگان
چکیده
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.
منابع مشابه
Multi-item inventory model with probabilistic demand function under permissible delay in payment and fuzzy-stochastic budget constraint: A signomial geometric programming method
This study proposes a new multi-item inventory model with hybrid cost parameters under a fuzzy-stochastic constraint and permissible delay in payment. The price and marketing expenditure dependent stochastic demand and the demand dependent the unit production cost are considered. Shortages are allowed and partially backordered. The main objective of this paper is to determine selling price, mar...
متن کاملGeometric programming with signomials
The difference of two "posynomials" (namely, polynomials with arbitrary real exponents, but positive coefficients and positive independent variables) is termed a signomial. Each signomial program (in which a signomial is to be either minimized or maximized subject to signomial constraints) is transformed into an equivalent posynomial program in which a posynomial is to be minimized subject only...
متن کاملSequential Convex Programming for the Efficient Verification of Parametric MDPs
Multi-objective verification problems of parametric Markov decision processes under optimality criteria can be naturally expressed as nonlinear programs. We observe that many of these computationally demanding problems belong to the subclass of signomial programs. This insight allows for a sequential optimization algorithm to efficiently compute sound but possibly suboptimal solutions. Each sta...
متن کاملDetermining Optimal Demand Rate and Production Decisions: A Geometric Programming Approach
In this paper a nonlinear model is presented to demonstrate the relation between production and marketing departments. By introducing some functions such as pricing cost and market share loss functions it will be tried to show some aspects of market modelling which has not been regarded before. The proposed model will be a constrained signomial geometric programming model. For model solving, af...
متن کاملGlobal solution of optimization problems with signomial parts
In this paper a new approach for the global solution of nonconvex MINLP (Mixed Integer NonLinear Programming) problems that contain signomial (generalized geometric) expressions is proposed and illustrated. By applying different variable transformation techniques and a discretization scheme a lower bounding convex MINLP problem can be derived. The convexified MINLP problem can be solved with st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematical programming
دوره 143 1-2 شماره
صفحات -
تاریخ انتشار 2014